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Abstract

In order to tackle behavior of individual components in concrete cells under shock loading, a multi-part model for
concrete is presented, wherein mortar and aggregate are assumed to be in mechanical equilibrium and compressed or
released isentropically. Computational simulations of plate shock experiments using the multi-part model for concrete
are performed. Computational velocity histories of the free surface of the target are compared with experimental results.
Nonlocal response of the multi-part model for concrete to uniform shock loading is presented. The irregular aggregate
distribution in actual concrete is replaced by a distribution of single-sized equally separate aggregates and the radius of
influence surrounding each aggregate is given. The phenomena accompanied by the passage of a spherical shock wave
through the mortar and aggregate are discussed. It is shown that Rayleigh-Taylor instability would cause separation of
mortar and aggregate seriously for concrete with porous mortar at low initial density. It is shown that the behavior of
the interface between mortar and aggregate under shock loading is captured qualitatively by the multi-part model for a
simulated concrete cell. The multi-part model presented in this paper can be expected to numerically simulate shock
loading behavior of concrete. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dynamic properties of concrete are not well understood. An empirical rate-dependent cap model (Chen
et al., 2000) was proposed assuming that the effects of strain rate on the plastic loading surface and damage
surface are separable and isolated from the static effect by considering the strength enhancement at high
strain rates. Using the proposed rate-dependent constitutive model for concrete, the numerical simulations
capture the overall qualitative behavior of concrete response to planar impact at different velocities.
However, in order to be able to model the shock wave behavior, a nonlinear volumetric material behavior is
required and shock equation of state properties of concrete has been developed by Grady (1996). Very little
work was undertaken on the behavior of concrete under plate impact conditions because of the experi-
mental difficulties involved. Concrete is a heterogeneous material and questions of hydrodynamic and

*Corresponding author. Tel.: +86-574-7604198; fax: +86-574-7600421.
E-mail address: chdnch@nbu.edu.cn (D. Chen).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(01)00102-0



8788 D. Chen et al. | International Journal of Solids and Structures 38 (2001) 8787-8803

thermodynamic equilibrium behind the shock wave are very complicate. Since the shock wave not only sees
components of different shock impedance but also travels through these components at different velocities.
In this paper, a multi-part model for concrete under shock loading is presented, computational simulations
of plate shock experiments using the multi-part model for concrete are performed and the nonlocal re-
sponse of the multi-part model for concrete to uniform shock loading is discussed. It is shown that the
multi-part model can be expected to numerically simulate shock loading behavior of concrete.

2. A multi-part model for concrete under shock loading

A unit cell for concrete presented in this paper consists of mortar and aggregate with known Hugoniots.
It has been found (Shi et al., 1999) that Hugoniots of mortar and aggregate can be adequately represented
by the linear relationship

U, = Co + AU, (2.1)

where U is the shock velocity, U, the particle velocity, and Cy, A the constants (in certain velocity region).
The theoretical analysis of the equation of state for mixtures is very complex and has not been carried
out yet. There are several interpolation methods that could be used in an attempt to predict the equation of
state for mixtures from the known Hugoniots of their components.
The method recommended by Mcqueen et al. (1970) is as follows:

e Construct the 0 K pressure—volume plot from the Hugoniot for each element.
e Mix the 0 K isotherm on a mass fraction basis and obtain the 0 K isotherm for the mixture.
e Obtain the equation of state for the mixture from the 0 K isotherm.

A much simpler method (Meyers, 1994) is based on the interpolation of the Cy and 4 values in Eq. (2.1)
by mass averaging.

Thus, the equation of state for the unit cell consisting of mortar and aggregate can be predicted with
varying degrees of rigorousness and the gross shock loading behavior of concrete can be simulated nu-
merically using hydrocodes. However, the question remains of how to consider the shock loading behavior
of individual components in the unit cell. It was noted (Bischoff and Perry, 1995) that little evidence was
available to suggest crack propagation through the aggregate particles during impact loading despite
suggestion to the contrary (Bischoff and Perry, 1991). Here, a multi-part model will be given to unit cells,
wherein the two components are modeled with separate meaning. In reality, the failure process in concrete
can be explained by the mesostructure of mortar and aggregate and the interaction between them.

We assume that the two components are in mechanical equilibrium,

Po(Vi,Em) — PA(Vo,E,) =0 (2.2)
where P is the pressure, V the specific volume, E the specific energy and subscripts m and a refer to mortar

and aggregate, respectively. It is desired to sum the specific volume and energy since these are additive for
the mixture.

E=mE, + (1 —my)Ey, (2.3)

V=mV,+ (1 —my)Vy (2.4)
where

my = M,/ (M, + Mp,) (2.5)

where M is the mass.
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In addition to Egs. (2.2)-(2.4), we consider the isentropic compression and expansion of individual
components in the unit cell in order to determine V,, E,, Vi, and E,, from V, E for the unit cell. In fact,
achievement of temperature equilibrium between different components of the mixture depends on grain
size. If no heat flow occurs, individual components are compressed and released isentropically. It can be
inferred from the conservation law of energy that

E,— VW, + PV, =0 (2.6)

holds, where the dot means a time derivative along a particle path and 7, is equal to stress deviators times
velocity strains. The proposed way to tackle behavior of individual components in unit cells is as follows:

e Obtain gross specific volume V" and energy E of unit cells using a finite difference procedure for conser-
vation equations of mass, momentum and energy.

e Determine individual specific volume (¥, V;,) and energy (E,, E,,) for aggregate and mortar in unit cells
by solving Egs. (2.2)—(2.4) and (2.6).

o Calculate equilibrium pressure p from the equation of state for mortar or aggregate and complete a cycle
for the finite difference procedure.

Obviously, the multi-part model presented above is different from the usual multi-phase fluid flow com-
munity, in which the set of equations consists of the conservation laws of mass, momentum and energy for
each phase.

3. Computational simulation of plate shock experiments using the multi-part model for concrete

For one-dimensional elastic—plastic flow, the principal equations for plane (d = 1), cylindrical (d = 2)
and spherical (d = 3) geometries are:

Vo1 o0 'v)

VoAaT T o (3.1)
U 9o, o, — 0y

7=, td=1) (3.2)
E—V[Sié+(d—1Sé]+(p+q)V =0 (3.3)

where U is the velocity; » the coordinate; o, = —(p + q) + S1; 09 = —(p + q) + S2; Si1, S, are stress deviators;
and &, &, the strain rates, ¢ is the artificial viscosity and given by (Wilkins, 1980)

g = CHAU) |V + Cy(PV)'*|AU| /v (3.4)

where C; = 2.0 and C; = 0.8.

As mentioned earlier, it has been found that the Hugoniots of mortar and aggregate can be adequately
represented by Eq. (2.1). Therefore, the following form (Wilkins, 1973) of Gruneisen equation of state is
adopted for mortar and aggregate, respectively:

P=kX +kX*+ kX’ +j,E (3.5)

where
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X=1-V/W
k= C3/Vo
k= Cy(24 = 50/2) /Wy (3.6)

ks = C2A(32—79)/ Vo
7o = Gruneisen parameter.

The cohesion and compaction behavior of concrete results in an increasing resistance to shear up to a
limiting value of yield strength as the loading increases. This is modeled in the present literature by Mohr—
Coulomb model. Note that although the yield stress is pressure dependent and expressed by Eq. (3.7), the
flow rule is volume independent, i.e. of the Prandtl-Reuss type.

Y/V/3 = 4; + Ayexp(—3p/A4s) + Asexp(—3p/As) (3.7)
A5 :Jlo/l’l
A4 = —[Al +A2 eXp(Jm/A3)] CXp(—}’Z)

where Y is the yield stress and A4, 4,, 43, Ji9, 1 are various parameters.

The finite difference equations for Egs. (3.1)—(3.4) are available (Wilkins, 1973). Gross specific volume V
and energy E of unit cells are obtained by using a finite difference scheme in which these equations are
correct to second order of small quantities Ar and A¢, except for the terms containing ¢ in Eq. (3.2) and p in
Eq. (3.3), where the conservation equation of energy (3.3) is not coupled with the equation of state for unit
cells. Solving Egs. (2.2)-(2.4) and (2.6) with Newton—Raphson process and Gaussian elimination method,
we determine individual specific volume (¥;,, ¥,) and energy (E,,, E,) for mortar and aggregate in unit cells.
Then we calculate the equilibrium pressure p from the equation of state for mortar or aggregate. The flow
rule of Prandtl-Reuss type with yield stress given by Eq. (3.7) is adopted to calculate stress deviators and a
cycle for the finite difference procedure is completed.

Very little work has been published on the shock loading behavior of concrete under plate impact
conditions. Recently, unique shock compression experiments have been developed by (Grady, 1996). Two
typical high-velocity impact examples are chosen to show the effectiveness of the present multi-part model
for concrete under shock loading. The experimental parameters for the chosen tests are listed in Table 1.

The experimental and computational velocity histories of the free surface of the target are shown in Figs.
1 and 2 for examples 3.1 and 3.2, respectively. In Figs. 1 and 2, curves e are experimental data (Grady,
1996) and curves C are computational results using the present multi-part model with m, = 0.31 and pa-
rameters listed in Table 2.

The parameters in Eq. (3.7) are as follows (Gupta and Seaman, 1979):

A; =90.0 MPa, A4, = —83.0 MPa, A4;=270.2MPa, J;,=61.0MPa, n=1.0.

Table 1
Impact experiment parameters
Driver plate (concrete) Target plate Impact Cy (km/s) A
Density (g/cm®)  Thick (mm) (copper) velocity (km/s)
Thick (mm)
Example 3.1 2.3 254 2.39 2.15 3.1 1.5

Example 3.2 23 25.4 2.33 1.74 3.0 1.7
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Fig. 1. The experimental and computational velocity histories of the free surface of the target for example 3.1.
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Fig. 2. The experimental and computational velocity histories of the free surface of the target for example 3.2.

Grady (1996) implied that a linear shock velocity versus particle velocity relation for concrete is existent
and the parameters Cy and A for these examples are listed in Table 1. In Figs. 1 and 2, curves C* are our
computational results using Gruneisen equation of state with these parameters for concrete. In Figs. 3 and 4
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Table 2
Parameters in Eq. (3.6) for examples 3.1 and 3.2
7 (cmlg) Co (kmls) J o
Mortar 0.46 2.3 0.81 0.62
Aggregate 0.38 243 1.52 2.05
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Fig. 3. The variations V},, V,, E, and E, in concrete near the concrete—copper interface with time for example 3.1.
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Fig. 4. The variations V;,, V,, Ei, and E, in concrete near the concrete-copper interface with time for example 3.2.

the variations of V;,, V,, E,, and E, in concrete near the concrete—copper interface with time are given for
examples 3.1 and 3.2, respectively.
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4. Nonlocal response of the multi-part model for concrete to uniform shock loading

We will look in more detail, at the mesoscopic level, at what happens during the passage of the shock
wave. The mesostructure of the multi-part model for concrete are related to the nonlocal response of
concrete to shock loading. A simplified description of concrete can be obtained by repeating presented unit
cells distributed uniformly throughout the material. The irregular aggregate distribution in actual concrete
is to be replaced by a distribution of single-sized equally separated aggregates. The radius » of influence
surrounding each aggregate is shown in Fig. 5 and can be estimated by

b = [(MnVa/MV,) + 1] a (4.1)

where a is mean radius of aggregate.

For a unit cell of concrete shown in Fig. 5, the phenomena accompanied by the passage of a spherical
shock wave through the mortar and aggregate are of fundamental interest in the study of micromechanics
of concrete under intense dynamic loading. When an impulsive pressure p(¢) is applied on the exterior
surface of the unit cell, the shock front is formed. In the course of its propagation, the intensity and the
velocity of the wave increase with increasing distance. If the shock has an intensity sufficient to vaporize the
mortar or aggregate, the converging shock front moves according to the law R = (—)", the velocity U,
density p and pressure P behind the front are:

p=pr+1)/(y=1) (4.2)
U=2R/(y+1) ~R 172/ (4.3)
P =2pyR?/(y+ 1) ~ R0/ (4.4)

where y is polytropic coefficient.
& = d(y) can be expressed by the approximation of Whitham (1958). However, Egs. (4.2)—(4.4) are only
valid for a perfect gas. A general equation of state £ = E(P, V) involves dimensional parameters and the

pA?)

PAD) PAD)

M: Mortar
\ A: Aggregate

yZU]

Fig. 5. A unit cell used in modeling the nonlocal response of concrete to uniform shock loading.
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self-similar solution exists no more. Moreover, a converging shock could be unstable and cumulative
processes cannot be perfect. Cumulation processes and self-similar solutions in gas dynamics have been
reviewed by Somon (1971). As the intensity of the shock becomes just enough to liquefy the mortar or
aggregate, the behavior of this liquefied zone is hydrodynamic. For a certain value of the wave’s pressure
peak, the mortar or aggregate is subjected to the passage of the wave to stresses greater than its dynamic
crushing strength, it is crushed consequently. The fracture of a rock which is due to shock compression was
discussed by Maury and Levret (1972). It is assumed that the fracture due to compression occurs when the
strain energy per unit volume referring to the distortion reaches a certain value. When the mortar or ag-
gregate is crushed by the shock, it may be roughly likened to sand. Under these conditions, the mechanical
properties of the material are comparable with those of a soil. In addition, the failure mechanisms involving
presented unit cells in compression under impact or explosive loading are supposed to be connected with
the Rayleigh-Taylor instability. In the course of shock propagation, superposed mortar and aggregate are
accelerated in a direction perpendicular to their interface and this interface is unstable according to
Rayleigh-Taylor instability. Defining the amplification factor of an unstable fluid surface as the ratio of 5
the amplitude of the disturbance at any time to 7, its initial value, Taylor found (Taylor, 1950) for ac-
celeration gl > g (g acceleration of gravity)

’710 = cosh \/{4nﬁ1(pz —p,)/(p, +p, )} (4.5)

where 7 is the number of wavelengths that the liquid has descended. Thus, the amplification of an unstable
disturbance depends only on the ratio of the densities of the two fluids and the number of wavelengths
through which they have descended.

Obviously, the analytical study on the response of the unit cell for concrete to uniform shock loading is
difficult and the numerical study of this problem is beneficial to discussing the micromechanisms of failure
of concrete. The influence of density distribution, characteristic lengths, porosity and shock behavior of
mortar and aggregate on response of concrete to shock loading. A numerical scheme for studying this two-
layer inclusion is implemented using the principal equations (3.1)—(3.3) with d = 3.

We assume that the porosity of concrete is concentrated in mortar. The equation of state of mortar could
be given by Herrmann’s p—a« model (Herrmann, 1969) or Carroll-Holt model (Carroll and Holt, 1972).
However, our problems of interest involve shock compaction of the porous mortar, i.e. the region of in-
terest lies on or near the Hugoniot. Using Rankine-Hugoniot relations and the Mie-Gruneisen equation, a
reliable calculation procedure for the equation of state of porous material was developed by Meyers (1994).
The Hugoniot of mortar taking account of porosity can be given by

RV — 5 — MIC2(Vo — V)
2V = 5(Voo = MV — AV — V)

(4.6)

Py =

where the subscript H is used for parameters along Hugoniot. Cy, 4 and y are parameters in the linear
relationship between shock and particle velocities and Gruneisen parameter for solid mortar, respectively.
Vo and Vy are initial specific volume of solid and porous mortar. Furthermore, for porous mortar, the Mie—
Gruneisen equation of state will be used.

Pm _PH - (Em _EH)?m/Vm (47)
where subscript m refers to mortar again.
En = Pu(Voo — V) /2 (4.8)

Three typical examples are chosen to show the influence of porosity and characteristic lengths on re-
sponse of concrete to shock loading. Parameters in Fig. 5 and Eq. (3.6) for examples are provided in
Table 3.
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Table 3
Parameters in Fig. 5 and Eq. (3.6) for examples
Mortar Aggregate
b (mm) ¥ (ecm’/g) C, (km/s) 7 To a (mm) Vp (cm?/g)  C, (km/s) A To
Example 4.1  1.46 0.46 2.3 0.81 0.62 0.95 0.38 243 1.52 2.05
Example 4.2 1.46 0.76 2.3 0.81 0.62 0.95 0.38 2.43 1.52 2.05
Example 4.3  14.6 0.46 2.3 0.81 0.62 9.5 0.38 243 1.52 2.05

The external surface in Fig. 5 is subjected to the following pressure p.(z), that is generated by a deto-
nating explosive.

2e(t) = 20exp(—2¢) (GPa) (4.9)

where ¢ is time (us).

Computational variations of U, P, V,, V,, E,,, and E, at the interface between mortar and aggregate with
time for examples 4.1 and 4.2 are given in Figs. 6-11, respectively. For example 4.2, the initial distention of
the mortar is 1.66 and Eq. (4.6) was adopted in the numerical simulation. However, calculated Hugoniots
for porous materials using Eq. (4.6) deviate from measured at lower pressures substantially. We neglected
pressure increase in compact process.

Figs. 6-11 show that the response of the unit cell for concrete to uniform shock compression is seriously
influenced by the initial distention 1.66 of mortar. The shock wave deposits a great deal of energy in the
porous mortar and raises higher pressure, internal energy at the interface between mortar and aggregate.

2.5
2r —example 4.1
2— example 4.2
1.5 |
W
~N
g
=
>
1 F
0.5
) L . L ) L N

0 ' 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

t(us)

Fig. 6. Computational variations of velocity U at the interface between mortar and aggregate with time for examples 4.1 and 4.2.
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Fig. 7. Computational variations of pressure P at the interface between mortar and aggregate with time for examples 4.1 and 4.2.
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Fig. 8. Computational variations of specific volume /;, at the interface between mortar and aggregate with time for examples 4.1 and 4.2.
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Fig. 9. Computational variations of specific volume ¥, at the interface between mortar and aggregate with time for examples 4.1
and 4.2.

However, decay rates of these variables at the interface with time are higher in example 4.2 than in example
4.1. The fracture due to compression is assumed to occur when the strain energy reaches a certain value.
Thus, it can be expected that the mortar and aggregate are both crushed more seriously or readily in ex-
ample 4.2 than in example 4.1. In addition, it can be seen from Figs. 6, 8 and 9 that in the initial accel-
eration of the interface between mortar and aggregate under shock loading, the ratio of the densities of
mortar and aggregate is greater in example 4.2 than in example 4.1. Therefore, the amplification factor of
the unstable interface given by Eq. (4.5) is greater in example 4.2 than in example 4.1. Rayleigh-Taylor
instability would cause separation of mortar and aggregate seriously for concrete with porous mortar at
low initial density.

The concrete material contained 3/8 in. (9.5 mm) quartz aggregate is considered in example 4.3. Com-
putational variations of U, P, Vy,, V,, Ey, and E, at the interface between mortar and aggregate with time for
example 4.3 are given in Figs. 12-17.

Obviously, mesostructure lengths of concrete cells influence their response to shock loading. The con-
tinuum average stress has no meaning for concrete volumes smaller than that determined by the meso-
structural heterogeneities of concrete. However, in general, the finite difference cell size for concrete could
not be greater than the maximum aggregate size. For example 4.3, a simulated concrete cell with average
density 2.3 g/cm® and spherical radius 14.6 mm is introduced and the multi-part model described in Section
2 is used to compute its response to the same loading. Computational variations of U, P, V;,, V,, E, and E,
at radius 9.5 mm are also shown in Figs. 12-17. It is shown from Figs. 12-17 that variations of velocity,
pressure, specific volume and energy at the interface between mortar and aggregate with time for concrete
contained 9.5 mm aggregate are captured qualitatively by the multi-part model for the simulated concrete
cell. Therefore, the multi-part model presented in this paper can be expected to simulate shock loading
behavior of concrete.
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Fig. 10. Computational variations of specific energy E,, at the interface between mortar and aggregate with time for examples 4.1
and 4.2.

5. Conclusions

(1) In order to tackle behavior of individual components in concrete cells under shock loading, a multi-
part model for concrete is presented, wherein mortar and aggregate are assumed to be in mechanical
equilibrium and compressed or released isentropically, for achievement of temperature equilibrium between
mortar and aggregate depends on grain size.

(2) Computational simulations of plate shock experiments using the multi-part model for concrete are
performed. Computational velocity histories of the free surface of the target are compared with experi-
mental results. Computational variations of specific volume and energy for mortar and aggregate in con-
crete near the fly plate-target plate interface with time are also given to show behavior of individual
components in concrete under shock loading.

(3) Nonlocal response of the multi-part model for concrete to uniform shock loading is presented. The
irregular aggregate distribution in actual concrete is replaced by a distribution of single-sized equally sep-
arated aggregates and the radius of influence surrounding each aggregate is given. The phenomena ac-
companied by the passage of a spherical shock wave through the mortar and aggregate are discussed.

(4) It is shown that the response of the unit cell for concrete to uniform shock compression is seriously
influenced by the initial distention of mortar. Rayleigh-Taylor instability would cause separation of mortar
and aggregate seriously for concrete with porous mortar at low initial density.

(5) It is shown that mesostructure lengths of concrete cells influence their response to shock loading. The
behavior of the interface between mortar and aggregate under shock loading is captured qualitatively by
the multi-part model for a simulated concrete cell. Thus, the multi-part model presented in this paper can be
expected to numerically simulate shock loading behavior of concrete.
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energy E, at the interface between mortar and aggregate with time for examples 4.1
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Fig. 12. Computational variations of velocity U at the interface between mortar and aggregate for example 4.3 and velocity U at radius

9.5 mm for a simulated concrete cell with time.
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Fig. 13. Computational variations of pressure P at the interface between mortar and aggregate for example 4.3 and pressure p at radius
9.5 mm for a simulated concert cell with time.
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t(us)

Fig. 14. Computational variations of specific energy E,, at the interface between mortar and aggregate for example 4.3 and specific
energy Ep, at radius 9.5 mm for a simulated concrete cell with time.
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Fig. 15. Computational variations of specific energy E, at the interface between mortar and aggregate for example 4.3 and specific
energy E, at radius 9.5 mm for a simulated concrete cell with time.
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Fig. 16. Computational variations of specific volume ¥, at the interface between mortar and aggregate for example 4.3 and specific
volume V7, at radius 9.5 mm for a simulated concrete cell with time.
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0.5

0.4
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Fig. 17. Computational variations of specific volume ¥, at the interface between mortar and aggregate for example 4.3 and specific
volume 7, at radius 9.5 mm for a simulated concrete cell with time.
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